Downloads provided by UsageCounts
pmid: 33884770
handle: 11311/1176507
AbstractNumerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid–Structure Interaction between the oscillating membrane and the blood flow via three‐dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three‐dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in‐vitro experimental data.
Extended finite elements method, Model validation, Finite Element Analysis, Fluid-structure interaction, Hemodynamics, Blood pump
Extended finite elements method, Model validation, Finite Element Analysis, Fluid-structure interaction, Hemodynamics, Blood pump
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 5 | |
| downloads | 15 |

Views provided by UsageCounts
Downloads provided by UsageCounts