Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Report . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BattLeDIM 2020 Problem Announcement and Description

Authors: , Vrachimis; , Eliades; , Taormina; , Ostfeld; , Kapelan; , Liu; , Kyriakou; +3 Authors

BattLeDIM 2020 Problem Announcement and Description

Abstract

Drinking Water Distribution Networks (DWDN) are susceptible to infrastructure failures, which may lead to water losses. Typically, these water losses are due to background leakages and pipe bursts which may occur anywhere within the distribution network. Background leakages are normally difficult to detect due to their small size, whereas pipe bursts are easier to locate as they are of larger size and may appear on the surface. The early detection and localization of some leakage event is extremely important, as this would reduce the time required for accommodating the event and therefore reducing the risk of further infrastructure degradation, contamination events and consumer complaints. In previous years, a number of methodologies have been proposed to detect and isolate the location of leakage events using various types of sensor measurements. These methods were commonly evaluated on private commercial datasets, and as a result, it is not possible to objectively compare these methods in their ability to detect and isolate leaks. In the past year, a leakage detection dataset has been proposed, LeakDB, based on benchmark networks and created using the WNTR tool, using pressure-driven demands and realistic leakage modelling. Inspired by the “BATtle of the Attack Detection ALgorithms” (BATADAL), which focused on the detection of cyber-physical attacks, our team decided to organize a similar “battle” focusing on leakage events. The Battle of the Leakage Detection and Isolation Methods (BattLeDIM), aims at objectively comparing the performance of methods for the detection and localization of leakage events, relying on SCADA measurements of flow and pressure sensors installed within water distribution networks. Participants may use different types of tools and methods, including (but not limited to) engineering judgement, machine learning, statistical methods, signal processing, and model-based fault diagnosis approaches.

Keywords

water distribution, leakage detection, leakage isolation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 46
    download downloads 26
  • 46
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
46
26
Green