
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Typical MESA and GYRE inlists associated with Van Beeck et al. (2020). MESA version 10398 and GYRE version 5.2. Context: Angular momentum (AM) transport models of stellar interiors require improvements to explain the strong extraction of AM from stellar cores that is observed with asteroseismology. One of the often invoked mediators of AM transport are internal magnetic fields, even though their properties, observational signatures and influence on stellar evolution are largely unknown. Aims: We study how a fossil, axisymmetric internal magnetic field affects period spacing patterns of dipolar gravity mode oscillations in main-sequence stars with masses of 1.3, 2.0 and 3.0 \(\mathrm{M}_{\odot}\) . We assess the influence of fundamental stellar parameters on the magnitude of pulsation mode frequency shifts. Methods: We compute dipolar gravity mode frequency shifts due to a fossil, axisymmetric poloidal-toroidal internal magnetic field for a grid of stellar evolution models, varying stellar fundamental parameters. Rigid rotation is taken into account using the traditional approximation of rotation and the influence of the magnetic field is computed using a perturbative approach. Results: We find magnetic signatures for dipolar gravity mode oscillations in terminal-age main-sequence stars that are measurable for a near-core field strength larger than 105 G. The predicted signatures differ appreciably from those due to rotation. Conclusions: Our formalism demonstrates the potential for the future detection and characterization of strong fossil, axisymmetric internal magnetic fields in gravity-mode pulsators near the end of core-hydrogen burning from Kepler photometry, if such fields exist. The publication date is the date of acceptance. J. Van Beeck would like to thank researchers M. Michielsen, C. Johnston, and dr. M. G. Pedersen for their valuable input in the MESA and GYRE computations.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 5 | |
downloads | 8 |