Downloads provided by UsageCounts
We present the design, implementation, and evaluation of a multi-sensor, low-power, necklace NeckSense, for automatically and unobtrusively capturing fine-grained information about an individual's eating activity and eating episodes, across an entire waking day in a naturalistic setting. NeckSense fuses and classifies the proximity of the necklace from the chin, the ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating activity. It then clusters the identified chewing sequences to determine eating episodes. We tested NeckSense on 11 participants with and 9 participants without obesity, across two studies, where we collected more than 470 hours of data in a naturalistic setting. Our results demonstrate that NeckSense enables reliable eating detection for individuals with diverse body mass index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, our system achieves an F1-score of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve an F1-score of 77.1% for episodes even in an all-day-around free-living setting. With more than 15.8 hours of battery life, NeckSense will allow researchers and dietitians to better understand natural chewing and eating behaviors. In the future, researchers and dietitians can use NeckSense to provide appropriate real-time interventions when an eating episode is detected or when problematic eating is identified. This material is based upon work supported by the National Institute of Diabetes and Digestive and Kidney Diseases under award number K25DK113242 (NIDDK). We would also like to acknowledge support by the National Science Foundation under award number CNS1915847. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Institutes of Health or the National Science Foundation.
human activity recognition, sensor fusion, neck-worn sensor, eating activity detection, automated dietary monitoring, wearable, free-living studies
human activity recognition, sensor fusion, neck-worn sensor, eating activity detection, automated dietary monitoring, wearable, free-living studies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 49 | |
| downloads | 2 |

Views provided by UsageCounts
Downloads provided by UsageCounts