Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimate of the atmospherically-forced contribution to sea surface height variability based on altimetric observations

Authors: Close, Sally; Penduff, Thierry; Speich, Sabrina; Molines, Jean-Marc;

Estimate of the atmospherically-forced contribution to sea surface height variability based on altimetric observations

Abstract

This repository contains the estimate of the atmospherically-forced contribution to sea level variability described in Close et al, 2020, and derived from the Ssalto/Duacs altimeter products produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). The files contain successive 5-day averages of sea level anomaly, with the same global coverage and 0.25° grid as the Ssalto/Duacs altimeter products. The estimate is created using a spatial bandpass filter, with cutoff scales of ~1.5° and 10.5°. Zeros in the mask file indicate regions in which it has not been possible to evaluate the quality of the estimate. The cutoff scales applied to the altimetry data were determined through analysis of output from the OceaniC Chaos – ImPacts, strUcture, predicTability (Penduff et al, 2014) experiment, comprising a 50-member ensemble of ocean-sea ice model hindcasts with 0.25° horizontal resolution (Bessières et al., 2017). The spatiotemporal coherence between the model-based estimates of the atmospherically-forced (ensemble mean) and total simulated sea surface height signals was analysed, and found to exhibit distinct partitioning between the atmospherically-forced and intrinsic contributions in a spatial (but not temporal) sense, thus suggesting that meaningful estimation of the two components can be achieved based on simple spatial filtering. Verification of the method using the model data indicates good accuracy, with a global mean correlation of 0.9 between the estimate based on spatial filtering and the ensemble mean sea surface height. Full details of the methodology and verification may be found in Close et al, 2020. ---- References: Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G., 2017. Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091–1106, doi: 10.5194/gmd-10-1091-2017. Close, S., Penduff, T., Speich, S. and Molines J.-M., 2020. A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations. Progr. Oceanogr. doi: 10.1016/j.pocean.2020.102314 Penduff, T., Barnier, B. , Terray, L., Bessières, L., Sérazin, G., Grégorio, S., Brankart, J., Moine, M., Molines, J., Brasseur, P., 2014. Ensembles of eddying ocean simulations for climate, CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 19.

This work is a contribution to the AtlantOS project, and has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No 633211. This is also a contribution to the PIRATE project funded by CNES through the Ocean Surface Topography Science Team (OST-ST), and to the GLO-HR project funded by the Copernicus Marine Environment Monitoring Service (CMEMS); CMEMS is implemented by Mercator Ocean International in the framework of a delegation agreement with the European Union. This work was also supported by the French national programme LEFE/INSU. The ensemble simulation used in the study was performed as part of the OCCIPUT project, funded by the ANR through contract ANR-13-BS06-0007–01. We acknowledge that the results of this research have been achieved using the PRACE Research Infrastructure resource CURIE based in France at TGCC; some of the computations were performed at TGCC under allocations granted by GENCI.

{"references": ["Bessi\u00e8res, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and S\u00e9razin, G., 2017. Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091\u20131106, doi: 10.5194/gmd-10-1091-2017.", "Close, S., Penduff, T., Speich, S. and Molines J.-M., 2020. A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations. Progr. Oceanogr. doi: 10.1016/j.pocean.2020.102314", "Penduff, T., Barnier, B. , Terray, L., Bessi\u00e8res, L., S\u00e9razin, G., Gr\u00e9gorio, S., Brankart, J., Moine, M., Molines, J., Brasseur, P., 2014. Ensembles of eddying ocean simulations for climate, CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 19."]}

Related Organizations
Keywords

sea level anomaly, altimetry, ocean

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 1
  • 7
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
7
1