Downloads provided by UsageCounts
Zinc oxide/reduced graphene oxide nanocomposites (ZnO/rGO) are synthesized via a simple one-pot solvothermal technique. The nanoparticle–nanorod turnability was achieved with the increase in GO additive, which was necessary to control the defect formation. The optimal defect in ZnO/rGO not only increased ZnO/rGO surface and carrier concentration, but also provided the alternative carrier pathway assisted with rGO sheet for electron–hole separation and prolonging carrier recombination. These properties are ideal for photodetection and photocatalytic applications. For photosensing properties, ZnO/rGO shows the improvement of photosensitivity compared with pristine ZnO from 1.51 (ZnO) to 3.94 (ZnO/rGO (20%)). Additionally, applying bending strain on ZnO/rGO enhances its photosensitivity even further, as high as 124% at r = 12.5 mm, due to improved surface area and induced negative piezoelectric charge from piezoelectric effect. Moreover, the photocatalytic activity with methylene blue (MB) was studied. It was observed that the rate of MB degradation was higher in presence of ZnO/rGO than pristine ZnO. Therefore, ZnO/rGO became a promising materials for different applications.
photocatalytics, GO additive, zno/rgo nanocomposites, uv detection, Article, Chemistry, UV detection, morphological tunability, go additive, QD1-999, ZnO/rGO nanocomposites
photocatalytics, GO additive, zno/rgo nanocomposites, uv detection, Article, Chemistry, UV detection, morphological tunability, go additive, QD1-999, ZnO/rGO nanocomposites
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 88 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 8 | |
| downloads | 18 |

Views provided by UsageCounts
Downloads provided by UsageCounts