
Autonomous and connected vehicles are rapidly evolving, integrating numerous technologies and software. This progress, however, has made them appealing targets for cybersecurity attacks. As the risk of cyber threats escalates with this advancement, the focus is shifting from solely preventing these attacks to also mitigating their impact. Current solutions rely on vehicle security operation centers, where attack information is analyzed before deciding on a response strategy. However, this process can be time-consuming and faces scalability challenges, along with other issues stemming from vehicle connectivity. This paper proposes a dynamic intrusion response system integrated within the vehicle. This system enables the vehicle to respond to a variety of incidents almost instantly, thereby reducing the need for interaction with the vehicle security operation center. The system offers a comprehensive list of potential responses, a methodology for response evaluation, and various response selection methods. The proposed solution was implemented on an embedded platform. Two distinct cyberattack use cases served as the basis for evaluating the system. The evaluation highlights the system's adaptability, its ability to respond swiftly, its minimal memory footprint, and its capacity for dynamic system parameter adjustments. The proposed solution underscores the necessity and feasibility of incorporating dynamic response mechanisms in smart vehicles. This is a crucial factor in ensuring the safety and resilience of future smart mobility.
20 pages
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
