Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/iccwor...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generosity Pays Off: A Game-Theoretic Study of Cooperation in Decentralized Learning

Authors: Giuseppe Di Giacomo; Francesco Malandrino; Carla Fabiana Chiasserini;

Generosity Pays Off: A Game-Theoretic Study of Cooperation in Decentralized Learning

Abstract

Decentralized learning, a paradigm enabling the training of Machine Learning (ML) models using multiple nodes, is gaining momentum, as it (i) improves data privacy and (ii) permits to leverage the computational capabilities of a wide set of nodes, thus being an excellent fit for the support of edge intelligence applications. However, such nodes, like users’ smartphones or vehicles, cannot be forced to participate in the learning process, and incentivizing them to do so is one of the foremost challenges of decentralized learning. To address this issue, we propose GENIAL – a game-theoretic approach, based upon generous games, to promote cooperation among user nodes for training or fine-tuning ML models. By allowing such nodes to be (moderately) generous, i.e., to contribute to decentralized training processes more often than what would be convenient for them in the short term, GENIAL leads to a Nash equilibrium where all nodes cooperate. Importantly, such equilibrium is also proven to converge to the Pareto optimal operating point that ensures a fair treatment to all nodes. Our theoretical findings are supported by numerical experiments, which further underline the effectiveness, and the benefits for rational nodes, of being generous in decentralized training.

Country
Italy
Related Organizations
Keywords

game theory, Distributed Machine Learning; Game theory; Model training, decentralised learning, SNS, beyond 5G, PREDICT-6G, node cooperation, incentive mechanism, 5G, 6G

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green