Downloads provided by UsageCounts
In the last years, we are witnessing an increasing availability of geolocated data, ranging from satellite images to user generated content (e.g., tweets). This big amount of data is exploited by several cloud-based applications to deliver effective and customized services to end users. In order to provide a good user experience, a low-latency response time is needed, both when data are retrieved and provided. To achieve this goal, current geospatial applications need to exploit efficient and scalable geospatial databases, the choice of which has a high impact on the overall performance of the deployed applications. In this paper, we compare, from a qualitative point of view, four state-of-the-art SQL and NoSQL databases with geospatial features, and then we analyze the performances of two of them, selecting the ones based on the Database-as-a-service (DBaaS) model: Azure SQL Database and Azure DocumentDB (i.e., an SQL database versus a NoSQL one). The empirical evaluation shows pros and cons of both solutions and it is performed on a real use case related to an emergency management application.
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Database-as-a-service (DBaaS), Big Geospatial data; Geospatial databases; Database-as-a-service (DBaaS), Geospatial databases, Geospatial data
Database-as-a-service (DBaaS), Big Geospatial data; Geospatial databases; Database-as-a-service (DBaaS), Geospatial databases, Geospatial data
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 5 | |
| downloads | 49 |

Views provided by UsageCounts
Downloads provided by UsageCounts