Downloads provided by UsageCounts
Natural disasters have become more frequent during the past 20 years due to significant climate changes. These natural events are hotly debated on social networks like Twitter and a huge amount of short text messages are continuously and promptly exchanged with personal opinions, descriptions of the natural events and their corresponding consequences. The analysis of these large and complex data could help policy-makers to better understand the event as well as to set priorities. However, the correct configuration of the tweet mining process is still challenging due to variable data distribution and the availability of a large number of algorithms with different specific parameters. The analyst need to perform a large number of experiments to identify the best configuration for the overall knowledge discovery process. Innovative, scalable, and parameter-free solutions need to be explored to streamline the analytics process. This paper presents an enhanced version of PASTA (a distributed selftuning engine) applied to a crisis tweet collection to group a corpus of tweets into cohesive and well-separated clusters with minimal analyst intervention. Experimental results performed on real data collected during natural disasters show the effectiveness of PASTA in discovering interesting groups of correlated tweets without selecting neither the algorithms nor their parameters.
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tweet analysis, Text mining, Big Data framework, data weighting function, Text mining; Parameter-free technique; data weighting function; Big Data framework; Tweet analysis, Parameter-free technique
Tweet analysis, Text mining, Big Data framework, data weighting function, Text mining; Parameter-free technique; data weighting function; Big Data framework; Tweet analysis, Parameter-free technique
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 | |
| downloads | 9 |

Views provided by UsageCounts
Downloads provided by UsageCounts