Downloads provided by UsageCounts
Floods are major natural disasters which cause deaths and material damages every year. Monitoring these events is crucial in order to reduce both the affected people and the economic losses. In this work we train and test three different Deep Learning segmentation algorithms to estimate the water area from river images, and compare their performances. We discuss the implementation of a novel data chain aimed to monitor river water levels by automatically process data collected from surveillance cameras, and to give alerts in case of high increases of the water level or flooding. We also create and openly publish the first image dataset for river water segmentation.
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
monitoring, Deep Learning, emergency, water, segmentation, flood
monitoring, Deep Learning, emergency, water, segmentation, flood
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 7 | |
| downloads | 32 |

Views provided by UsageCounts
Downloads provided by UsageCounts