Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1992
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Comparative Physiology B
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy storage during reproductive diapause in the Drosophila melanogaster species group

Authors: Masahito T. Kimura; Samuel H. Hori; Takashi Ohtsu;

Energy storage during reproductive diapause in the Drosophila melanogaster species group

Abstract

Temperate species of the Drosophila melanogaster group enter reproductive diapause for overwintering in response to short daylength. During the prediapause period they accumulate triacylglycerols, but not glycogen, as energy resources. The capacity for storing triacylglycerols differs between species, and appears to be closely correlated with diapause and cold-hardiness; cool-temperate species, such as those of the auraria species complex, which enter a deep diapause and are highly cold-hardy, accumulate larger quantities of triacylglycerols than warm-temperate species, such as D. rufa and D. lutescens, which enter a weak diapause and are less cold-hardy. Among the cool-temperate species, D. subauraria occurs at a higher latitude and has the greatest capacity for accumulating triacylglycerols. A subtropical species, D. takahashii, which has no diapause in nature and is not cold-hardy, is unable to store the same quantities of triacylglycerols as temperate species.

Keywords

Male, Insecta, Arthropoda, Diptera, Reproduction, Biodiversity, Adaptation, Physiological, Biological Evolution, Drosophila melanogaster, fruit flies, flies, Animalia, Animals, Drosophila, Female, Seasons, Energy Metabolism, Glycogen, Triglycerides, Taxonomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
Green