Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AN EFFICIENT OPTIMAL-POWER-FLOW SOLUTION VIA IMPERIALIST COMPETITIVE ALGORITHM

Authors: Zeynal, Hossein; Eidiani, Mostafa;

AN EFFICIENT OPTIMAL-POWER-FLOW SOLUTION VIA IMPERIALIST COMPETITIVE ALGORITHM

Abstract

An Efficient Optimal-Power-Flow Solution via Imperialist Competitive Algorithm https://ijesse.net/article/8 Hossein Zeynal1, Mostafa Eidiani2 1Dept. of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran, hzeynal@gmail.com 2Energy Security and Sustainable Energy Institute, Mashhad, Iran, eidiani@ijesse.net Abstract. This paper presents an Imperialist Competitive Algorithm (ICA) for Optimal Power Flow (OPF) solution. ICA procures an efficient modeling of non-differentiable and non-linear objective and constraints in OPF optimization problem. Simple implementation, fast convergence within a scant number of steps, and a slimmer objective value are parts of the proposed ICA-OPF algorithm. As a result, ICA-OPF is enabled handling more realistic systems. To evaluate the proposed algorithm, simulations are also conducted on two universally-appreciated metaheuristic techniques of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Obtained results show that the developed ICA-OPF outruns the GA and PSO both in terms of CPU clocking and objective value. The IEEE 57-bus system is employed to test the proposed algorithm against conventional techniques. Based on the simulation results, the proposed method can be installed in Load Dispatch Center with a better solution quality and extensible to larger-scale utility size problem. Keywords: Imperialist Competitive Algorithm, Optimal Power Flow (OPF), Evolutionary Algorithm چکیده: این مقاله یک الگوریتم رقابتی امپریالیستی (ICA) برای راه حل پخش توان بهینه (OPF) ارائه می دهد. ICA مدلسازی کارآمدی از اهداف و محدودیت‌های غیر قابل تمایز و غیرخطی را در مسئله بهینه‌سازی OPF تهیه می‌کند. پیاده سازی ساده، همگرایی سریع در تعداد کمی از مراحل، و مقدار هدف کوچک‌تر، بخش‌هایی از الگوریتم پیشنهادی ICA-OPF هستند. ICA-OPF قادر است سیستم‌های واقعی‌ را مدیریت کند. برای ارزیابی الگوریتم پیشنهادی، شبیه‌سازی‌ها نیز بر روی دو تکنیک فراابتکاری که به طور جهانی ارائه شده‌اند و الگوریتم ژنتیک (GA) و بهینه‌سازی ازدحام ذرات (PSO) انجام می‌شوند. نتایج به‌دست‌آمده نشان می‌دهد که ICA-OPF توسعه‌یافته از GA و PSO هم از نظر سرعت و هم از نظر مقدار هدف، پیشی می‌گیرد. سیستم 57 باس IEEE برای آزمایش الگوریتم پیشنهادی در برابر تکنیک‌های مرسوم استفاده شده است. بر اساس نتایج شبیه‌سازی، روش پیشنهادی می‌تواند در مرکز توزیع بار، راه‌حل بهتری ارائه دهد و مشکل اندازه سیستم را نیز برطرف کند. کلمات کلیدی: الگوریتم رقابتی امپریالیستی، پخش توان بهینه (OPF)، الگوریتم تکاملی

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities