Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2023
License: CC BY
Data sources: ZENODO
ZENODO
Software . 2023
License: CC BY
Data sources: Datacite
ZENODO
Software . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classification of nutrition state in maize leaves by transfer learning

Authors: Ramos-Ospina, Manuela;

Classification of nutrition state in maize leaves by transfer learning

Abstract

To address the timely identification of nutritional disorders, it is proposed a bedrock composed of: Load and clean datastore.rar Preprocessing of data: Code for resizing and cropping images to increase the number of original images fivefold. Split the data: MATLAB code to split data into training, validation, and test sets. MATLAB_networks.rar ImageDataStores: Containing training, validation, and test sets. Transfer learning: MATLAB code to run five transfer learning models = VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2 on the imagesets. Output: The output of each network script are: Traininfo_.csv: Having Training_accuracy, Validation_accuracy, Training_loss, Validation_loss info OutPred_.csv: Predicted labels Outtrue_.csv: True labels confussionMatrix__.pdf: confusion matrix

Monitoring the nutritional status of crops is crucial in agricultural management. Given that nutritional deficiencies primarily manifest through visual characteristics, artificial vision stands out as a competitive choice to assess the nutritional status of individual plants. However, to train a supervised artificial vision system driven by convolutional neural networks (CNNs), a high amount of data, properly formatted and labeled is necessary. That's why transfer learning techniques address some of these challenges.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities