Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the impact of climate change on the shallow aquifer of Grombalia (Tunisia)

Authors: Maria Giovanna Tanda; Hanene Akrout; Daniele Secci; Valeria Todaro; Andrea Zanini; Marco D'oria; Hatem Baccouche; +3 Authors

Evaluation of the impact of climate change on the shallow aquifer of Grombalia (Tunisia)

Abstract

Climate change presents a serious problem for water resources (WR) and the shallow aquifers are strongly affected. This type of WR presents fundamental importance in certain regions, due to their accessibility and sometimes, for their quality, it is preferred to surface water sources, often polluted. It is also, affected by overexploitation problems, which contribute to the destruction of the sustainability of the aquifer system. This study considers the Grombalia aquifer in Tunisia which has suffered from climate change’s impact in recent years due to water resources scarcity. Aim of the present research is to evaluate the impact of climate change on this aquifer that is one of the pilot sites in the European project InTheMed. First, a collection of historical temperature, precipitation and groundwater level data in the period 1976-2020 was carried out. Then, starting from the few available geological cross sections, a two-dimensional numerical model of the aquifer was developed in MODFLOW. The groundwater numerical model reproduces the whole basin, from the recharge area to the outlet in the Mediterranean Sea. The area is characterized by agricultural intensive activities and high-water demand. For this reason, the model required a calibration of hydraulic parameters, recharge and pumping rate. After the calibration, the numerical model was able to estimate the groundwater flow across the entire watershed of Grombalia aquifer. To evaluate the impact of climate change on the future groundwater availability, the model was driven using future precipitation and temperature projections. The water abstractions were assumed to remain unchanged in the future and equal to the condition of existing wells at 2020. To describe the future climate, 17 combinations of Regional Climate Models (RCM) and General Circulation Models (GCMs), developed within the EURO-CORDEX initiative, were used. The simulations were performed for the period 2006-2100, and according to the RCP4.5 and RCP8.5 scenarios. Before their use, the climate projections were downscaled and bias corrected with reference to the historical temperature and precipitation data. The results are evaluated in terms of local variations of the groundwater level and their uncertainty is expressed with reference to the variability of the 17 RCM-GCM combinations.Acknowledgments This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA program supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 1923. 

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 15
    download downloads 14
  • 15
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
15
14
Green
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!