Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

Authors: Gleason, Sean M.; Stephens, Andrea E.A.; Tozer, Wade C.; Blackman, Chris J.; Butler, Don W.; Chang, Yvonne; Cook, Alicia M.; +6 Authors

Data from: Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

Abstract

1. The rate of elongation and thickening of individual branches (shoots) varies across plant species. This variation is important for the outcome of competition and other plant-plant interactions. Here we compared rates of shoot growth across 44 species from tropical, warm temperate, and cool temperate forests of eastern Australia. 2. Shoot growth rate was found to correlate with a suite of traits including the potential height of the species, xylem-specific conductivity, leaf size, leaf area per xylem cross-section, twig diameter (at 40 cm length), wood density and modulus of elasticity. 3. Within this suite of traits, maximum plant height was the clearest correlate of growth rates, explaining 50 to 67% of the variation in growth overall (p < 0.0001), and 23 to 32% of the variation (p < 0.05) in growth when holding the influence of the other traits constant. Structural equation models suggest that traits associated with ‘hydraulics’, ‘biomechanics’, and the ‘leaf economics spectrum’ represent three clearly separated axes of variation, with the hydraulic axis exhibiting the strongest alignment with height and largest independent contribution to growth (in the case of branch thickening). However most of the capacity of these axes to predict growth was also associated with maximum height, presumably reflecting coordinated selection on multiple traits that together influence life histories. 4. Growth rates were not strongly correlated with leaf nitrogen or leaf mass per unit leaf area. 5. Correlations between growth and maximum height arose both across latitude (47%, p < 0.0001) and from within-site differences between species (30%, p < 0.0001). Covariation between growth and maximum height was driven in part by variation in irradiance across sites as well as among canopy positions within sites (23%, p < 0.0001). A significant fraction of this shared variation was independent of irradiance (45%, p < 0.0001), reflecting intrinsic differences across species and sites.

trait_data_Gleason_et_al_2017Leaf, stem, xylem, height, shoot growth data for 44 Australian woody dicotyledon species. Trait descriptions and units are given in the last column.trait_publish.csv

Keywords

plant traits, leaf size, shoot extension, growth rate, conductivity, structural equation modelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 2
  • 9
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
9
2
Related to Research communities