Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2020
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms

Authors: Li, Shaopeng; Wang, Pandeng; Chen, Yongjian; Wilson, Maxwell; Yang, Xian; Ma, Chao; Lu, Jianbo; +4 Authors

Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms

Abstract

Microbes, similar to plants and animals, exhibit biogeographic patterns. However, in contrast with the considerable knowledge on the island biogeography of higher organisms, we know little about the distribution of microorganisms within and among islands. Here, we explored insular soil bacterial and fungal biogeography and underlying mechanisms, using soil microbiota from a group of land-bridge islands as a model system. Similar to island species-area relationships observed for many macroorganisms, both island-scale bacterial and fungal diversity increased with island area; neither diversity, however, was affected by island isolation. By contrast, bacterial and fungal communities exhibited strikingly different assembly patterns within islands. The loss of bacterial diversity on smaller islands was driven primarily by the systematic decline of diversity within samples, whereas the loss of fungal diversity on smaller islands was driven primarily by the homogenization of community composition among samples. Lower soil moisture limited within-sample bacterial diversity, whereas smaller spatial distances among samples restricted among-sample fungal diversity, on smaller islands. These results indicate that among-island differences in habitat quality generate the bacterial island species-area relationship, whereas within-island dispersal limitation generates the fungal island species-area relationship. Together, our study suggests that different mechanisms underlie similar island biogeography patterns of soil bacteria and fungi.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 30
    download downloads 8
  • 30
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
30
8
Related to Research communities