Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design

Authors: Zamora-Gutierrez, Veronica; Lopez-Gonzalez, Celia; MacSwiney Gonzalez, M. Cristina; Fenton, Brock; Jones, Gareth; Kalko, Elisabeth K. V.; Puechmaille, Sebastien J.; +2 Authors

Data from: Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design

Abstract

Monitoring global biodiversity is critical for understanding responses to anthropogenic change, but biodiversity monitoring is often biased away from tropical, megadiverse areas that are experiencing more rapid environmental change. Acoustic surveys are increasingly used to monitor biodiversity change, especially for bats as they are important indicator species and most use sound to detect, localise and classify objects. However, using bat acoustic surveys for monitoring poses several challenges, particularly in megadiverse regions. Many species lack reference recordings, some species have high call similarity or differ in call detectability, and quantitative classification tools, such as machine learning algorithms, have rarely been applied to data from these areas. Here, we collate a reference call library for bat species that occur in a megadiverse country, Mexico. We use 4685 search-phase calls from 1378 individual sequences of 59 bat species to create automatic species identification tools generated by machine learning algorithms (Random Forest). We evaluate the improvement in species-level classification rates gained by using hierarchical classifications, reflecting either taxonomic or ecological constraints (guilds) on call design, and examine how classification rate accuracy changes at different hierarchical levels (family, genus and guild). Species-level classification of calls had a mean accuracy of 66%, and the use of hierarchies improved mean species-level classification accuracy by up to 6% (species within families 72%, species within genera 71·2% and species within guilds 69·1%). Classification accuracy to family, genus and guild-level was 91·7%, 77·8% and 82·5%, respectively. The bioacoustic identification tools we have developed are accurate for rapid biodiversity assessments in a megadiverse region and can also be used effectively to classify species at broader taxonomic or ecological levels. This flexibility increases their usefulness when there are incomplete species reference recordings and also offers the opportunity to characterise and track changes in bat community structure. Our results show that bat bioacoustic surveys in megadiverse countries have more potential than previously thought to monitor biodiversity changes and can be used to direct further developments of bioacoustic monitoring programs in Mexico.

Data for each of the 4 classifiersThere are 4 sheets in the excel file. Each sheet contains the data used for each one of the 4 classifiers. Classifier 1 - Species-level without a hierarchy. Classifier 2 - Species-level within a family hierarchy. Classifier 3 - Species-level within a genus hierarchy. Classifier 4 - Species-level within a guild hierarchy. The species acronyms can be found in the supplementary material of the paper. The column ‘Fold’ indicates to which one of the 5 folds each call was assigned for the 5-folds cross-validation procedure used to estimate the accuracy of each classifier.Data-All-Classifiers.xlsx

Keywords

whispering bats, acoustic identification, guild, hierarchical classification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 26
    download downloads 7
  • 26
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
26
7
Related to Research communities
Italian National Biodiversity Future Center