Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Haplotype-based genome-wide association increases the predictability of leaf rust (Puccinia triticina) resistance in wheat

Authors: Liu, Fang; Jiang, Yong; Zhao, Yusheng; Schulthess, Albert W; Reif, Jochen C;

Haplotype-based genome-wide association increases the predictability of leaf rust (Puccinia triticina) resistance in wheat

Abstract

Resistance breeding is crucial for a sustainable control of wheat leaf rust and SNP-based genome-wide association studies (GWAS) are widely used to dissect leaf rust resistance. Unfortunately, GWAS based on SNPs explained often only a small proportion of the genetic variation. We compared SNP-based GWAS with a method based on functional haplotypes (FH) considering epistasis in a comprehensive hybrid wheat mapping population composed of 133 parents plus their 1,574 hybrids and characterized with 626,245 high-quality SNPs. In total, 2,408 and 1,139,828 significant associations were detected in the mapping population by using SNP-based and FH-GWAS, respectively. These associations mapped to 25 and 69 candidate regions, correspondingly. SNP-based GWAS highlighted two already-known resistance genes, i.e. Lr22a and Lr34-B, while FH-GWAS not only detected associations on these genes but also on two additional genes, i.e. Lr10 and Lr1. As revealed by a second hybrid wheat population for independent validation, using detected associations from SNP-based and FH-GWAS reached predictabilities of 11.72% and 22.86%, respectively. Therefore, FH-GWAS is not only more powerful to detect associations, but also improves the accuracy of marker-assisted selection as compared to the SNP-based approach.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 8
  • 8
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
8
8
Related to Research communities