Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2024
License: CC BY
Data sources: ZENODO
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods of Improving Thermal Performance of Vapour Compression Based Refrigeration System Through Eco Friendly Refrigerants to Reduce Their Environmental Impact

Authors: R.S. Mishra; Ansh Agarwal; Jayant Dixit; Samruddhi Kadam;

Methods of Improving Thermal Performance of Vapour Compression Based Refrigeration System Through Eco Friendly Refrigerants to Reduce Their Environmental Impact

Abstract

Tetrafluoroethane (CF3CH2F), an HFC refrigerant, is also known as R134a. It is safe for normal handling because it is neither poisonous, flammable, nor corrosive. After it was discovered recently that R-134a contributes to global warming, the European Union forbade its use in brand-new automobiles starting in 2011. Worked on a vapour compression-based refrigeration system, utilised hydrocarbon (HC) refrigerants which were examined for their energetic and exergetic performance. In this investigation, pure Tetrafluoroethane (CF3CH2F) from the R134a family of HFCs was used for a theoretical analysis, along with other refrigerants which were eco-friendly and had a lower environmental impact( low Global Warming Potential and Ozone Depletion Potential) :trans-1,3,3,3- Tetrafluoroprop -1-ene( R1234 ze (Z), R1234ze (E), (Z)-1-Chloro-2,3,3,3-Tetrafluoropropane (R1224YD (Z)), Fluoroethene (R1141),3,3,3-Trifluoroprop-1-ene (R1243 ZF).The thermodynamic equations of the refrigerants were solved for analysis using the Engineering equation solver application. It was concluded that R1234ZE (Z) is the most effective refrigerant.

Related Organizations
Keywords

Eco-friendly, Refrigerants, Refrigeration System, Thermal Performance analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green