
doi: 10.3390/en15165815
EAF steelmaking based on renewable electricity allows for low-CO2 steel production. However, the increased integration of volatile renewable energies into the energy system requires the provision of flexibility options. In view of the substantial oxygen consumption in the steel mill, flexible on-site generation and storage holds a significant potential for demand-side management. The utilization of by-product oxygen from an electrolysis plant not only contributes to load flexibility but also generates a climate-neutral fuel. In the present study, different process layouts are developed based on state-of-the-art technologies. The proposed supply systems for oxygen, hydrogen, and synthetic natural gas are subjected to design and operational optimization and assessed with respect to the overall demand-side flexibility, carbon dioxide emission reduction, and economic viability.
oxygen production, Technology, electrolysis, T, EAF steelmaking; demand-side management; oxygen production; pressure swing adsorption; electrolysis; res integration; climate neutrality, EAF steelmaking, pressure swing adsorption, res integration, demand-side management
oxygen production, Technology, electrolysis, T, EAF steelmaking; demand-side management; oxygen production; pressure swing adsorption; electrolysis; res integration; climate neutrality, EAF steelmaking, pressure swing adsorption, res integration, demand-side management
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
