Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Catalystsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable Highly Selective Toluene Oxidation to Benzaldehyde

Authors: Francesca Valentini; Giacomo Ferracci; Pierluca Galloni; Giuseppe Pomarico; Valeria Conte; Federica Sabuzi;

Sustainable Highly Selective Toluene Oxidation to Benzaldehyde

Abstract

Thanks to the well-recognized role of benzaldehyde in industry, nowadays the research of new and sustainable approaches to selectively synthesize such an interesting product is receiving great attention from the chemists’ community. In this paper, a V-based catalytic biphasic system is adopted to perform toluene oxidation to benzaldehyde. Importantly, to pursue sustainability, organic solvents have been avoided, so toluene is used as substrate and co-solvent, together with water. Also, the use of hydrophobic ionic liquids has been explored. To perform oxidation, NH4VO3 catalyst, H2O2, and a safe and inexpensive co-catalyst are used. Among the tested co-catalysts, KF and O2 were found to be the best choice, to guarantee good yields, in mild reaction conditions. In fact, with such a sustainable method, up to 30% of benzaldehyde can be obtained at 60 °C and, more interestingly, the oxidative system can be recharged, raising-up the yield. The entire process results highly selective, since no traces of benzyl alcohol or benzoic acid are detected. Hence, it constitutes a very appealing synthetic route, even suitable to be easily scaled-up at an industrial level.

Country
Italy
Keywords

Peroxido-complex, Toluene oxidation, Settore CHIM/06 - CHIMICA ORGANICA, benzaldehyde, hydrogen peroxide, Benzaldehyde; Biphasic system; Density functional theory (DFT) calculations; Homogeneous catalysis; Hydrogen peroxide; Peroxido-complex; Reaction mechanism; Sustainability; Toluene oxidation; Vanadium, toluene oxidation; benzaldehyde; vanadium; peroxido-complex; homogeneous catalysis; biphasic system; sustainability, toluene oxidation, Reaction mechanism, density functional theory (DFT) calculations, Density functional theory (DFT) calculation, Homogeneous catalysi, 660, biphasic system, Vanadium, Benzaldehyde, Hydrogen peroxide, sustainability, peroxido-complex, homogeneous catalysis, Sustainability, vanadium, reaction mechanism, Biphasic system

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
gold