Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/3381...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY NC SA
Data sources: ZENODO
https://doi.org/10.24868/issn....
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Optimisation of a Flywheel Energy Storage System using the PNDC Power Hardware in the Loop Platform

Authors: Jennett, K I; Downie, A S H; Avras, A; Coffele, F; Tate, A; Lewinton, S;

Performance Optimisation of a Flywheel Energy Storage System using the PNDC Power Hardware in the Loop Platform

Abstract

The UKMOD has an objective to improve the efficiency and flexibility associated with the integration of naval electrical systems into both new and existing platforms. A more specific challenge for the MOD is in the de-risking of the integration of future pulse and stochastic loads such as Laser Directed Energy Weapons. To address this the Power Networks Demonstration Centre (PNDC) naval research programme is focused towards understanding and resolving the associated future power system requirements. To address these challenges, the UK MOD and the PNDC have worked collaboratively to develop a 540kVA Power Hardware in the Loop (PHIL) testing facility. For the UK MOD this supports the “UK-US Advanced Electric Power and Propulsion Project Arrangement (AEP3).” This testing facility has been used to explore the capabilities of PHIL testing and evaluate a Flywheel Energy Storage System (FESS) in a notional ship power system environment. This testing provided an opportunity to develop and further validate the capability of the PHIL platform for continued marine power system research. This paper presents on the results from PHIL testing of the FESS at PNDC, which involved both characterisation and interfacing the FESS within a simulated ship power system. The characterisation tests involved evaluating the: response to step changes in current reference; frequency and impedance characteristics; and response during uncontrolled discharge. The ship power system testing involved interfacing the FESS to a simulated real time notional ship power system model and evaluating the response of the FESS and the impact on the ship power system under a range of different operational scenarios. This paper also discuss the links between FESS characterisation testing and the development of the energy management system implemented in the real time model. This control system was developed to schedule operation of the FESS state (charging, discharging and idle) with the other simulated generation sources (the active front end and battery storage) and with the loads within the ship power system model. Finally, this paper highlights how the testing at PNDC has also supported the comparison and validation of previous FESS testing at Florida State University’s Centre Advanced Power Systems (FSU CAPS) facility, and how the combined efforts help to collectively de-risk future load Total Ship Integration and Evolving Intelligent Platforms in both UK and US programmes via the AEP3 PA.

Keywords

Energy storage, Marine systems, TK, VM, Integration, Propulsion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 8
  • 4
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
4
8
Green
hybrid