Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Advanced Research
Article . 2024 . Peer-reviewed
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SIMULTANEOUS EFFECT OF SDL AND MOSE2 LAYERS ON CIGS SOLAR CELL PERFORMANCE AND STRATEGY FOR IMPROVING ULTRA-THIN CIGS SOLAR CELL PERFORMANCE

Authors: Boureima Traore; Adama ZONGO; Issiaka Sankara; Soumaila Ouedraogo; Daouda Oubda; Marcel Bawindsom Kebre; Francois ZOUGMORE;

SIMULTANEOUS EFFECT OF SDL AND MOSE2 LAYERS ON CIGS SOLAR CELL PERFORMANCE AND STRATEGY FOR IMPROVING ULTRA-THIN CIGS SOLAR CELL PERFORMANCE

Abstract

In this paper, based on numerical simulation, the SCAPS-1D software was used to simultaneously study the influence of the surface defect layer (SDL) and the molybdenum diselenide layer (MoSe2) on the performance of the CIGS solar cell. These two defects layers are respectively formed at the front interface (CdS/CIGS) and the back interface (CIGS/ Mo) by atomic inter-diffusion. Simultaneous analysis of SDL and MoSe2 layers thickness revealed that optimum performance is achieved for 10 nm thickness of SDL layer and 35 nm thickness of MoSe2. A study of the gap energy revealed that optimum performance is obtained for 1.25 eV energy gap SDL layer and 1.35 eV energy gap of MoSe2 layer. Next, a performance study of the ultra-thin CIGS solar cell with optimized SDL and MoSe2 layers was carried out. It was found that the presence of the SDL and MoSe2 layers optimized improves the electrical performance of the ultra-thin CIGS solar cell.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold