Downloads provided by UsageCounts
pmid: 27760860
Multiple sclerosis (MS) is a complex disease, where several processes can be selected as a target for positron emission topography (PET) imaging. Unlike magnetic resonance imaging (MRI), PET provides specific and quantitative information, and unlike neuropathology, it can be non-invasively applied to living patients, which enables longitudinal follow-up of the MS pathology. In the study of MS, PET can be useful for in vivo evaluation of specific pathological characteristics at various stages of the disease. Increased understanding of the progressive MS pathology will enhance the treatment options of this undertreated condition. The ultimate goal of developing and expanding PET in the study of MS is to have clinical non-invasive in vivo imaging biomarkers of neuroinflammation that will help to establish prognosis and accurately measure response to therapeutics. This topical review provides an overview of the promises and challenges of the use of PET in MS.
Multiple Sclerosis, Receptor, Adenosine A2A, Macrophage Activation, ta3112, Magnetic Resonance Imaging, ta3124, Positron-Emission Tomography, Animals, Humans, Microglia
Multiple Sclerosis, Receptor, Adenosine A2A, Macrophage Activation, ta3112, Magnetic Resonance Imaging, ta3124, Positron-Emission Tomography, Animals, Humans, Microglia
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 32 | |
| downloads | 9 |

Views provided by UsageCounts
Downloads provided by UsageCounts