Downloads provided by UsageCounts
Abstract The authors investigate the transition of numerous subtropical cyclones into late season tropical storms and hurricanes during the 2000 and 2001 Atlantic tropical cyclone seasons. In all transitioning cases (10), the 900–200-hPa wind shear was initially near or in excess of the upper limit of vertical shear deemed suitable for tropical cyclogenesis. In many of these cases, the vertical shear decreased markedly near or prior to the time of tropical cyclone formation. In cases that did not become named tropical cyclones, either the tropospheric vertical shear remained in excess of 15–20 m s−1 or the underlying sea surface temperature (SST) dropped below about 26°C prior to or during the weakening of the shear. Cases in which the shear remained large featured multiple, short-wave upper-tropospheric troughs interacting with the developing lower-tropospheric disturbance such that classical occlusion did not occur. Through detailed analysis and simulation of the development of Hurricane Michael in 2000...
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 110 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 74 | |
| downloads | 16 |

Views provided by UsageCounts
Downloads provided by UsageCounts