Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://lirias.kuleu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Conference object . 2020
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

Authors: Alder, Fritz; Van Bulck, Jo; Oswald, David; Piessens, Frank;

Faulty Point Unit: ABI Poisoning Attacks on Intel SGX

Abstract

This paper analyzes a previously overlooked attack surface that allows unprivileged adversaries to impact supposedly secure floating-point computations in Intel SGX enclaves through the Application Binary Interface (ABI). In a comprehensive study across 7 widely used industry-standard and research enclave shielding runtimes, we show that control and state registers of the x87 Floating-Point Unit (FPU) and Intel Streaming SIMD Extensions (SSE) are not always properly sanitized on enclave entry. First, we abuse the adversary’s control over precision and rounding modes as a novel “ABI-level fault injection” primitive to silently corrupt enclaved floating-point operations, enabling a new class of stealthy, integrity-only attacks that disturb the result of SGX enclave computations. Our analysis reveals that this threat is especially relevant for applications that use the older x87 FPU, which is still being used under certain conditions for high-precision operations by modern compilers like gcc. We exemplify the potential impact of ABI-level quality-degradation attacks in a case study of an enclaved machine learning service and in a larger analysis on the SPEC benchmark programs. Second, we explore the impact on enclave confidentiality by showing that the adversary’s control over floating-point exception masks can be abused as an innovative controlled channel to detect FPU usage and to recover enclaved multiplication operands in certain scenarios. Our findings, affecting 5 out of the 7 studied runtimes, demonstrate the fallacy and challenges of implementing high-assurance trusted execution environments on contemporary x86 hardware. We responsibly disclosed our findings to the vendors and were assigned two CVEs, leading to patches in the Intel SGX-SDK, Microsoft OpenEnclave, the Rust compiler’s SGX target, and Go-TEE.

Country
Belgium
Related Organizations
Keywords

Technology, Science & Technology, Computer Science, Information Systems, Computer Science, Theory & Methods, FPU, Computer Science, Intel SGX, side channels, Trusted execution, ABI

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 8
  • 7
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Top 10%
Average
Average
7
8
Green