Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/8516...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1145/3093...
Conference object
License: ACM Copyright Policies
Data sources: Sygma
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

Modeling Aggregate Input Load of Interoperable Smart City Services

Authors: Aleksandar Antonic; Martina Marjanovic; Ivana Podnar Zarko;

Modeling Aggregate Input Load of Interoperable Smart City Services

Abstract

The Internet of Things (IoT) is expanding and reaching the maturity level beyond initial deployments. An integrative and interoperable IoT platform proves to be a suitable execution environment for Smart City services because users simultaneously use multiple services, while an IoT platform enables cross-service data sharing. A large number of various IoT and mobile devices as well as the corresponding services can generate tremendous input load on an underlying IoT platform. Thus, it is crucial to analyze the overall input rate on Smart City services to ensure predefined quality of service (e.g., low latency required by some IoT services). An aggregate input rate which characterizes a real world deployment can be used to check if a platform is able to adequately support multiple services running in parallel and to evaluate its overall performance. In this paper we review IoT-based Smart City services to identify key applications characterizing the domain, e.g., smart mobility, smart utilities, and citizen- driven mobile crowd sensing services. Next, we analyze the potential load which such applications pose on IoT services that continuously process the generated data streams. The analysis is used to create a model estimating an aggregate load generated by Smart City applications. We simulate a number of characteristic application compositions to provide insight about the aggregate input load and its potential impact on the performance of Smart City services. The proposed model is a first step towards predicting the processing load of Smart City services to facilitate the assessment and planning of required resources for continuous processing of sensor data in the context of Smart City services.

Country
Croatia
Keywords

input load, model, Internet of Things, Smart City services, input load, model, Internet of Things, Smart City services

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 39
    download downloads 24
  • 39
    views
    24
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Average
Average
39
24