Downloads provided by UsageCounts
doi: 10.1145/2907071
As the trends of process scaling make memory systems an even more crucial bottleneck, the importance of latency hiding techniques such as prefetching grows further. However, naively using prefetching can harm performance and energy efficiency and, hence, several factors and parameters need to be taken into account to fully realize its potential. In this article, we survey several recent techniques that aim to improve the implementation and effectiveness of prefetching. We characterize the techniques on several parameters to highlight their similarities and differences. The aim of this survey is to provide insights to researchers into working of prefetching techniques and spark interesting future work for improving the performance advantages of prefetching even further.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 4 | |
| downloads | 64 |

Views provided by UsageCounts
Downloads provided by UsageCounts