Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal of Physics
Article
License: CC BY
Data sources: UnpayWall
American Journal of Physics
Article . 2009 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2009
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A water wave analog of the Casimir effect

Authors: Denardo, Bruce C.; Puda, Joshua J.; Larraza, Andrés;

A water wave analog of the Casimir effect

Abstract

Two rigid plates are vertically suspended by thread such that they are parallel to and opposite each other. The plates are partially submerged in a dish of liquid that is attached to the top of a vertical shake table. When the shake table is driven with noise in a frequency band, random surface waves are parametrically excited, and the plates move toward each other. The reason for this attraction is that the waves carry momentum, and the wave motion between the plates is visibly reduced. The behavior is analogous to the Casimir effect, in which two conducting uncharged parallel plates attract each other due to the zero-point spectrum of electromagnetic radiation. The water wave analog can be readily demonstrated and offers a visual demonstration of a Casimir-type effect. Measurements of the force agree with the water wave theory even at large wave amplitudes, where the theory is expected to break down. The water wave analog applies to side-by-side ships in a rough sea and is distinct from the significant attraction that can be caused by a strong swell.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 132
    download downloads 64
  • 132
    views
    64
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
16
Top 10%
Average
Average
132
64
hybrid