
doi: 10.1117/12.2070285
In this work, an alternative formulation of the laws of refraction of light is presented. The proposed formulation unifies the two classic laws of refraction, and it is shown the correspondence between the new and the classic formulations. This new formulation presents a remarkable didactic interest for the conceptual interpretation and resolution of classic problems related to the phenomenon of refraction of light, such as those proposed to students of geometric optics on their first year of college. As an example, this formulation is applied for the resolution of two refraction problems typically assigned to student of such educational level. Results and comments from the students are presented. Although rigorously formulated in this work, the new formulation can be stated from a didactic viewpoint, using everyday language, as follows: “When a ray is refracted, the only variation that undergoes its direction vector is that the parallel component to the surface separating two media (defined in the plane formed by the incident ray and the normal to the surface at the point of incidence) is multiplied by the relative refractive index between both media”.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
