Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Microb...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Microbiology
Article
License: CC BY SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2007
License: CC BY SA
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Microbiology
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptional response of Silicibacter pomeroyi DSS‐3 to dimethylsulfoniopropionate (DMSP)

Authors: Bürgmann, Helmut; Howard, Erinn C.; Ye, Wenying; Sun, Feng; Sun, Shulei; Napierala, Sarah; Moran, Mary Ann;

Transcriptional response of Silicibacter pomeroyi DSS‐3 to dimethylsulfoniopropionate (DMSP)

Abstract

SummaryDimethylsufoniopropionate (DMSP) is an abundant organic sulfur compound in the ocean and an important substrate for marine bacterioplankton. The Roseobacter clade of marine alphaproteobacteria, including Silicibacter pomeroyi strain DSS‐3, are known to be involved in DMSP degradation in situ. The fate of DMSP has important implications for the global sulfur cycle, but the genes involved in this process and their regulation are largely unknown. S. pomeroyi is capable of performing two major pathways of DMSP degradation, making it an important model organism. Based on the full genome sequence of this strain we designed an oligonucleotide‐based microarray for the detection of transcripts of nearly all genes. The array was used to study the transcriptional response of S. pomeroyi cultures to additions of DMSP compared to the non‐sulfur compound acetate in a time series experiment. We identified a number of upregulated genes that could be assigned to potential roles in the metabolism of DMSP. DMSP also affected the transcription of genes for transport and metabolism of peptides, amino acids and polyamines. DMSP concentration may thus also play a role as a chemical signal, indicating phytoplankton abundance and eliciting a regulatory response aimed at making maximum use of available nutrients.

Keywords

Quality Control, Transcription, Genetic, Gene Expression Profiling, Sulfonium Compounds, Biological Transport, Gene Expression Regulation, Bacterial, Rhodobacteraceae, Sulfur, Acetic Acid, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 18
    download downloads 13
  • 18
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
54
Top 10%
Top 10%
Top 10%
18
13
Green
hybrid