Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Global Change Biology
Article
License: Wiley Online Library User Agreement
Data sources: Sygma
Global Change Biology
Article . 2018 . Peer-reviewed
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathways regulating decreased soil respiration with warming in a biocrust‐dominated dryland

Authors: Pablo García‐Palacios; Cristina Escolar; Marina Dacal; Manuel Delgado‐Baquerizo; Beatriz Gozalo; Victoria Ochoa; Fernando T. Maestre;

Pathways regulating decreased soil respiration with warming in a biocrust‐dominated dryland

Abstract

AbstractA positive soil carbon (C)‐climate feedback is embedded into the climatic models of the IPCC. However, recent global syntheses indicate that the temperature sensitivity of soil respiration (RS) in drylands, the largest biome on Earth, is actually lower in warmed than in control plots. Consequently, soil C losses with future warming are expected to be low compared with other biomes. Nevertheless, the empirical basis for these global extrapolations is still poor in drylands, due to the low number of field experiments testing the pathways behind the long‐term responses of soil respiration (RS) to warming. Importantly, global drylands are covered with biocrusts (communities formed by bryophytes, lichens, cyanobacteria, fungi, and bacteria), and thus,RSresponses to warming may be driven by both autotrophic and heterotrophic pathways. Here, we evaluated the effects of 8‐year experimental warming onRS, and the different pathways involved, in a biocrust‐dominated dryland in southern Spain. We also assessed the overall impacts on soil organic C (SOC) accumulation over time. Across the years and biocrust cover levels, warming reducedRSby 0.30 μmol CO2 m−2 s−1(95% CI = −0.24 to 0.84), although the negative warming effects were only significant after 3 years of elevated temperatures in areas with low initial biocrust cover. We found support for different pathways regulating the warming‐induced reduction inRSat areas with low (microbial thermal acclimation via reduced soil mass‐specific respiration and β‐glucosidase enzymatic activity) vs. high (microbial thermal acclimation jointly with a reduction in autotrophic respiration from decreased lichen cover) initial biocrust cover. Our 8‐year experimental study shows a reduction in soil respiration with warming and highlights that biocrusts should be explicitly included in modeling efforts aimed to quantify the soil C–climate feedback in drylands.

Keywords

Autotrophic Processes, Lichens, Climate Change, Fungi, Temperature, Heterotrophic Processes, Bryophyta, Bacterial Physiological Phenomena, Cyanobacteria, Carbon, Carbon Cycle, Soil, Spain, XXXXXX - Unknown, Ecosystem, Soil Microbiology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 4
  • 9
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
42
Top 10%
Top 10%
Top 10%
9
4
hybrid