Downloads provided by UsageCounts
Target tracking, nonlinear control, and fault detection are typically evaluated with only a Root Mean Square (RMS). RMS is an absolute measurement of the system performance and does not provide a statistic as to the tracker, controller, or fault detection algorithmic performance. For this paper, we investigate the non-credibility index (NCI) and average normalized estimation error square (ANEES) for nonlinear estimation for the Kalman Filter (KF), the Central Difference Filter (DD1), the unscented Kalman filter (UKF), and the particle filter (PF). Fault detection and target track performance is dependent on target maneuvers, sensor errors, model parameters, and state estimation which need to be understood relative to the filter performance versus the absolute performance (i.e. root mean square) of the system. Utilizing the developments of the Nonlinear Estimation Framework (NEF) toolbox, we develop methods of nonlinear relative comparison performance between nonlinear filters in a unified scenario.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 3 | |
| downloads | 16 |

Views provided by UsageCounts
Downloads provided by UsageCounts