
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11573/1336068
This paper presents a decentralised control strategy for the management of simultaneous charging sessions of electric vehicles. The proposed approach is based on the model predictive control methodology and the Lagrangian decomposition of the constrained optimization problem which is solved at each sampling time. This strategy allows the computation of the charging profiles in a decentralised way, with limited information exchange between the electric vehicles. The simulation results show the potential of the proposed approach in relation to the problem of shaving the aggregated power withdrawal from the electricity distribution grid, while still satisfying drivers’ preferences for charging.
Charging stations, Cost function, Decentralized control, Electric vehicles, State of charge, Optimal control; Cost function; State of charge; Electric vehicles; Decentralized control; Charging stations, Optimal control
Charging stations, Cost function, Decentralized control, Electric vehicles, State of charge, Optimal control; Cost function; State of charge; Electric vehicles; Decentralized control; Charging stations, Optimal control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 6 | |
downloads | 10 |