Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Ahstract-A very low-loss micromachined waveguide bandpass filter for use in D-band (110–170 GHz) telecommunication applications is presented. The 134–146 GHz filter is implemented in a silicon micromachined technology which utilises a double H-plane split, resulting in significantly lower insertion loss than conventional micromachined waveguide devices. Custom split-blocks are designed and implemented to interface with the micromachined component. Compact micromachined E-plane bends connect the split-blocks and DUT. The measured insertion loss per unit length of the waveguide technology (0.008-0.016dB/mm) is the lowest reported to date for any micromachined waveguide at D-band. The fabricated 6-pole filter, with a bandwidth of 11.8 GHz (8.4 %), has a minimum insertion loss of 0.41 dB, averaging 0.5 dB across its 1 dB bandwidth, making it the lowest-loss D-band filter reported to date in any technology. Its return loss is better than 20 dB across 85 % of the same bandwidth. The unloaded quality factor of a single cavity resonator implemented in this technology is estimated to be 1600.
Other Electrical Engineering, Electronic Engineering, Information Engineering, telecommunication, bandpass filter, Annan elektroteknik och elektronik, waveguide filter, wireless link, micromachined waveguide, D-band
Other Electrical Engineering, Electronic Engineering, Information Engineering, telecommunication, bandpass filter, Annan elektroteknik och elektronik, waveguide filter, wireless link, micromachined waveguide, D-band
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 13 | |
| downloads | 30 |

Views provided by UsageCounts
Downloads provided by UsageCounts