Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/drcn57...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimum Network Slicing for Ultra-reliable Low Latency Communication (URLLC) Services in Campus Networks

Authors: Zacarias, Iulisloi; Carpio, Francisco; Drummond, André Costa; Jukan, Admela;

Optimum Network Slicing for Ultra-reliable Low Latency Communication (URLLC) Services in Campus Networks

Abstract

Within 3GPP, the campus network architecture has evolved as a deployment option for industries and can be provisioned using network slicing over already installed 5G public network infrastructure. In campus networks, the ultra-reliable low latency communication (URLLC) service category is of major interest for applications with strict latency and high-reliability requirements. One way to achieve high reliability in a shared infrastructure is through resource isolation, whereby network slicing can be optimized to adequately reserve computation and transmission capacity. This paper proposes an approach for vertical slicing the radio access network (RAN) to enable the deployment of multiple and isolated campus networks to accommodate URLLC services. To this end, we model RAN function placement as a mixed integer linear programming problem with URLLC-related constraints. We demonstrate that our approach can find optimal solutions in real-world scenarios. Furthermore, unlike existing solutions, our model considers the user traffic flow from a known source node on the network's edge to an unknown \textit{a priori} destination node. This flexibility could be explored in industrial campus networks by allowing dynamic placement of user plane functions (UPFs) to serve the URLLC.

Related Organizations
Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Funded by