Downloads provided by UsageCounts
pmid: 17677917
Coherent anti-Stokes Raman spectroscopy has been used to study deuterium at ambient temperature to 187 GPa, the highest pressure this technique has ever been applied. The pressure dependence of the nu1 vibron line shape indicates that deuterium has a rho direct=0.501 and rho exciton=0.434 mol/cm3 for a band gap of 2omega P=4.66 eV. The extrapolation from the ambient pressure band gap yields a metallization pressure of 460 GPa, confirming earlier measurements. Above 143 GPa, the Raman shift data provide clear evidence for the presence of the ab initio predicted I' phase of deuterium.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 55 | |
| downloads | 19 |

Views provided by UsageCounts
Downloads provided by UsageCounts