Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proto‐oncogene TCL1: more than just a coactivator for Akt

Authors: Masayuki, Noguchi; Virginie, Ropars; Christian, Roumestand; Futoshi, Suizu;

Proto‐oncogene TCL1: more than just a coactivator for Akt

Abstract

ABSTRACT Serine threonine kinase Akt, also called PKB (protein kinase B), plays a central role in regulating intracellular survival. Deregulation of this Akt signaling pathway underlies various human neoplastic diseases. Recently, the proto‐oncogene TCL1 (T cell leukemia 1), with a previously unknown physiological function, was shown to interact with the Akt pleckstrin homology domain, enhancing Akt kinase activity; hence, it functions as an Akt kinase coactivator. In contrast to pathological conditions in which the TCL1 gene is highly activated in various human neoplasmic diseases, the physiological expression of TCL1 is tightly limited to early developmental cells as well as various developmental stages of immune cells. The NBRE (nerve growth factor‐responsive element) of the proximal TCL1 promoter sequences can regulate the restricted physiological expression of TCL1 in a negative feedback mechanism. Further, based on the NMR structural studies of Akt‐TCL1 protein complexes, an inhibitory peptide, “Akt‐in,” consisting of the βA strand of TCL1, has been identified and has therapeutic potential. This review article summarizes and discusses recent advances in the understanding of TCL1‐Akt functional interaction in order to clarify the biological action of the proto‐oncogene TCL1 family and the development avenues for a suppressive drug specific for Akt, a core intracellular survival regulator.—Noguchi, M., Ropars, V., Roumestand, C., Suizu, F. Proto‐oncogene TCL1: more than just a coactivator for Akt. FASEB J. 21, 2273–2284 (2007)

Keywords

Models, Molecular, Protein Conformation, Molecular Sequence Data, Proto-Oncogene Mas, Molecular Weight, Leukemia, Prolymphocytic, Multigene Family, Proto-Oncogene Proteins, Humans, Protein Isoforms, Amino Acid Sequence, Proto-Oncogene Proteins c-akt

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Cancer Research