Downloads provided by UsageCounts
doi: 10.1093/jxb/eru514
pmid: 25609826
In spite of the different morphologies of sepals, petals, stamens, and carpels, all these floral organs are believed to be modified versions of a ground-state organ similar to the leaf. Modifications of the ground-state developmental programme are orchestrated by different combinations of MADS-domain transcription factors encoded by floral organ identity genes. In recent years, much has been revealed about the gene regulatory networks controlled by the floral organ identity genes and about the genetic pathways that control leaf development. This review examines how floral organ identity is connected with the control of morphogenesis and differentiation of shoot organs, focusing on the model species Arabidopsis thaliana. Direct links have emerged between floral organ identity genes and genes involved in abaxial-adaxial patterning, organ boundary formation, tissue growth, and cell differentiation. In parallel, predictive models have been developed to explain how the activity of regulatory genes can be coordinated by intercellular signalling and constrained by tissue mechanics. When combined, these advances provide a unique opportunity for revealing exactly how leaf-like organs have been 'metamorphosed' into floral organs during evolution and showing crucial regulatory points in the generation of plant form.
Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis, Cell Differentiation, MADS Domain Proteins, Flowers, Transcription Factors
Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis, Cell Differentiation, MADS Domain Proteins, Flowers, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 43 | |
| downloads | 31 |

Views provided by UsageCounts
Downloads provided by UsageCounts