Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Physics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2020
Data sources: Lirias
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Physics
Article . 2020 . Peer-reviewed
Data sources: Crossref
Journal of Applied Physics
Article . 2020 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intermediate scale bandgap fluctuations in ultrathin Cu(In,Ga)Se2 absorber layers

Authors: Guy Brammertz; Guy Brammertz; Marc Meuris; Marc Meuris; Thierry Kohl; Thierry Kohl; J. de Wild; +8 Authors

Intermediate scale bandgap fluctuations in ultrathin Cu(In,Ga)Se2 absorber layers

Abstract

Ultrathin single- and three-stage Cu(In,Ga)Se2 absorber layers were analyzed with room temperature photoluminescence (PL) spectra. An anomalous blueshift was observed upon increasing carrier injection for both samples. This blueshift was attributed to the presence of bandgap fluctuations that are of the same order as the minority carrier diffusion length. From time resolved measurements, a diffusion length of a few 100 nms was deduced. The single-stage spectrum consists of two peaks, and the sample was, therefore, also analyzed by hyperspectral imaging, providing lateral PL and reflectance data with 1 μm resolution. Marginal variations were observed in the PL yield and spectra. This homogeneity could again be attributed to an intermediate scale of the bandgap fluctuation with an upper limit of 1 μm for the scale of the lateral bandgap fluctuations. The two peaks in the PL spectra of the single-stage sample could be attributed to interference, and correction methods were applied. The bandgap fluctuations were extracted for the three-stage and single-stage sample and were 45 meV and 72 ± 3 meV, respectively. It is suggested that this difference is attributed to the smaller grains and larger amount of grain boundaries in the single-stage sample.

Country
Belgium
Related Organizations
Keywords

Science & Technology, 02 Physical Sciences, Physics, DIFFUSION, 09 Engineering, Physics, Applied, THIN-FILMS, Physical Sciences, LUMINESCENCE, CU(IN, 51 Physical sciences, 49 Mathematical sciences, 01 Mathematical Sciences, Applied Physics, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 4
  • 2
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Top 10%
Average
Average
2
4
Green
hybrid