
doi: 10.1038/nmat1216
pmid: 15359345
Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revolutionary advances in lightweight, high-strength applications. Long metallic nanotubes will enable new types of micro-electromechanical systems such as micro-electric motors, and can also act as a nanoconducting cable for wiring micro-electronic devices. Here we report the synthesis of 4-cm-long individual single-wall carbon nanotubes (SWNTs) at a high growth rate of 11 microm s(-1) by catalytic chemical vapour deposition. Our results suggest the possibility of growing SWNTs continuously without any apparent length limitation.
Nanotubes, Carbon, Microscopy, Electron, Scanning, Microscopy, Atomic Force, Spectrum Analysis, Raman
Nanotubes, Carbon, Microscopy, Electron, Scanning, Microscopy, Atomic Force, Spectrum Analysis, Raman
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 468 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
