Downloads provided by UsageCounts
doi: 10.1038/369058a0
PLANTS and soils are a critically important element in the global carbon–energy equation. It is estimated that in forest ecosystems over two-thirds of the carbon is contained in soils and peat deposits1. Despite the importance of forest soils in the global car-bon cycle, fluxes of carbon associated with fundamental processes and soil functional groups are inadequately quantified, limiting our understanding of carbon movement and sequestration in soils. We report here the direct measurement of carbon in and through all major pools of a mycorrhizal (fungus-root) coniferous seedling (a complete carbon budget). The mycorrhizal symbiont reduces over-all retention of carbon in the plant–fungus symbiosis by increasing carbon in roots and below-ground respiration and reducing its retention and release above ground. Below ground, mycorrhizal plants shifted allocation of carbon to pools that are rapidly turned over, primarily to fine roots and fungal hyphae, and host root and fungal respiration. Mycorrhizae alter the size of below-ground carbon pools, the quality and, therefore, the retention time of carbon below ground. Our data indicate that if elevated atmos-pheric CO2 and altered climate stressors alter mycorrhizal colonization in forests, the role of forests in sequestering carbon could be altered.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 213 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 47 | |
| downloads | 23 |

Views provided by UsageCounts
Downloads provided by UsageCounts