Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Fuelsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Fuels
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Spiral - Imperial College Digital Repository
Article . 2012
License: rioxx All Rights Reserved
Energy & Fuels
Article . 2012 . Peer-reviewed
Data sources: Crossref
Energy & Fuels
Article . 2012 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2012
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Different Dopants and Doping Procedures on the Reactivity of CaO-based Sorbents for CO2 Capture

Authors: Al-Jeboori, MJ; Fennell, PS; Michaela, N; Peng, K;

Effects of Different Dopants and Doping Procedures on the Reactivity of CaO-based Sorbents for CO2 Capture

Abstract

Calcium-looping is a promising CO2-capture technology. The economics and environmental impact of the process are affected by the rapid decay in reactivity of the limestone sorbent, which necessitates a high purge rate from the system to maintain sorbent reactivity. This work investigates techniques to improve long-term reactivity in such a system by doping the limestone with a variety of different dopants. It also demonstrates that the main reason for improvement is that the doping increases the volume of pores around 100 nm in diameter in the calcined material after a significant number of cycles, in comparison to the calcine from an undoped sorbent. Improved reactivity means a lower required purge-rate and fewer potential disposal issues, and less fresh limestone to be used. Doped samples were subject to repeated cycles of carbonation and calcination in a fluidized bed reactor (FBR). The work includes the use of inorganic salts MgCl2, CaCl2, Mg(NO3)2, and the Grignard reagent-isopropylmagnesium chloride...

Country
United Kingdom
Keywords

330, Attrition, Doping, Calcium Looping, CO2 capture, Fluidised Bed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 17
  • 3
    views
    17
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
61
Top 10%
Top 10%
Top 10%
3
17
Green
hybrid