
pmid: 40382279
Crops based on mixtures of species or genotypes support yield stability by providing multiple ecosystem services. However, the genetic, molecular, and evolutionary dynamics underlying co-adaptation within such mixtures must be understood to optimize beneficial plant-plant interactions. We therefore propose agroecological genomics as an integrated quantitative and population genetics approach that can be combined with cutting-edge omics methods and participatory science. This strategy embraces the heterogeneity of agroecosystems derived from interactions between biotic and physical environmental components such as climate, crop management, and socio-cultural factors by exploiting decentralized research. The integration of such results will reveal the whole-genome patterns of co-adaptation in crop mixtures, leading to greater knowledge of the key traits that drive adaptation as well as to the development of innovative tools for mixed-crop breeding.
[SDV.SA] Life Sciences [q-bio]/Agricultural sciences
[SDV.SA] Life Sciences [q-bio]/Agricultural sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
