Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Perspectives in Plan...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Perspectives in Plant Ecology Evolution and Systematics
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi-scale approach reveals random phylogenetic patterns at the edge of vascular plant life

Authors: Yoann Le Bagousse-Pinguet; Pierre Liancourt; Lars Götzenberger; Francesco de Bello; Jan Altman; Viktorie Brozova; Zuzana Chlumska; +7 Authors

A multi-scale approach reveals random phylogenetic patterns at the edge of vascular plant life

Abstract

Abstract Mountain plant diversity results from a myriad of factors, including evolutionary history, species pools, abiotic and biotic constraints. For instance, increasing stress (e.g., elevation) often selects communities with species originating from fewer, and more closely-related clades. We assessed phylogenetic diversity and turnover of plant communities by considering multiple drivers simultaneously: 1) the species pools; 2) the regional context, i.e., two regions of the arid Trans-Himalaya (the Karakoram Range and Little Tibet) with distinct history, climate and species richness (regional scale); 3) the abiotic constraint with communities spread out along an elevation gradient in each region (community scale); 4) the biotic constraint, i.e., species co-existing inside a competitive dominant species (cushion plant) vs. its adjacent open area in each community (neighbourhood scale); and 5) two phylogenetic scales (overall vs. recent events in the assembled phylogeny). We found random phylogenetic patterns for all spatial and phylogenetic scales, irrespective of the regional context, and the abiotic and biotic conditions under consideration. Contrary to expectations, we observed a tendency for phylogenetic evenness in Little Tibet and in the Karakoram Range with increasing elevation. The observed phylogenetic patterns were mostly explained by region, elevation and interactions among the multiple drivers under considerations. Phylogenetic scale, species pools and cushion plants explained patterns to a lower but significant extent. The studied phylogenetic patterns emerge from the complex interplay between multiple drivers, and challenge the common view that increasing spatial and phylogenetic scales, as well as increasing biotic and abiotic constraints, select communities with species originating from fewer, and more closely-related clades.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 2
  • 6
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Average
Top 10%
6
2
hybrid
Related to Research communities