Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Instruments ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

Genesis capturing the sun: Solar wind irradiation at Lagrange 1

Authors: Michael J. Calaway; Eileen K. Stansbery; Lindsay P. Keller;

Genesis capturing the sun: Solar wind irradiation at Lagrange 1

Abstract

Genesis, a member of NASAs Discovery Mission program, is the world’s first sample return mission since the Apollo program to bring home solar matter in ultra-pure materials. Outside the protection of Earth’s magnetosphere at the Earth–Sun Lagrange 1 point, the deployed sample collectors were directly exposed to solar wind irradiation. The natural process of solar wind ion implantation into a highly pure silicon (Si) bulk composition array collector has been measured by spectroscopic ellipsometry and scanning transmission electron microscopy (STEM). Ellipsometry results show that bulk solar wind ions composed of approximately 95% H+, 4% He+ and <1% other elements physically altered the first 59–63 nm of crystalline silicon substrate during 852.8 days of solar exposure. STEM analysis confirms that the solar accelerated ions caused significant strain and visible structural defects to the silicon structure forming a 60–75 nm thick irradiation damage region directly below the surface SiO2 native oxide layer. Monte Carlo simulations of solar wind H, He, C, O, Ne, Mg, Si and Fe ion collisions in the Si collector with fluences calculated from the Genesis and ACE spacecrafts were used to estimate the energy deposited and Si vacancies produced by nuclear stopping in a flight-like Si bulk array collector. The coupled deposited energy model with the flown Genesis Si in situ measurements provides new insight into the basic principles of solar wind diffusion and space weathering of materials outside Earth’s magnetosphere.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 289
    download downloads 27
  • 289
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Average
Average
Average
289
27
hybrid