Downloads provided by UsageCounts
In this work CrAlO and CrAlO/CrAlN multilayers deposited by cathodic arc evaporation are evaluated as protective films in metal and ceramic powder FAST sintering tool dies fabricated in titanium-zirconium-molybdenum allows (TZM). The films have been characterised in terms of their composition, microstructure, mechanical properties and thermal stability in air at high temperatures between 800 °C and 1100 °C; in addition the tribological performance has been analysed at room temperature and at 400 °C. The crystalline structure and composition of the CrAlO based coatings are compatible with the formation of a mixture of α-corundum and a cubic fcc (Cr,Al)2O3. The crystalline structure of the multilayer is, on the other hand, dominated by the cubic fcc lattice plane reflections of the CrAlN. The deposited specimens have high hardness, between 25 and 30 GPa, which are stable even after annealing at 1000 °C. Even more, the multilayer coating also exhibited good mechanical stability at 1100 °C. The multilayer coating also exhibited an excellent behaviour against wear at 400 °C. Sintering trials using coated TZM dies have been carried out using Ti90Sn10 and Al2O3 high energy ball milled powders. The experimental results show that the oxide based coating formulations are potentially able to protect the tools from wear, sticking and oxidation of their surfaces. This may allow the use of TZM material as an alternative to other substrates such as graphite. The authors acknowledge the financial support of the European Commission through the FP7 Grant Agreement 608720 (Micro-FAST), and the MINECO (Spain) in the frame of the PROTEOX project (MAT2013-45391-P).
Wear resistance, Engineering design, 670, Sintering, TA174, Hardness, Cathodic arc evaporation, Oxide coating, 620
Wear resistance, Engineering design, 670, Sintering, TA174, Hardness, Cathodic arc evaporation, Oxide coating, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 30 | |
| downloads | 57 |

Views provided by UsageCounts
Downloads provided by UsageCounts