Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hydrologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hydrology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hydrology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.jh...
Article
License: Elsevier TDM
Data sources: Sygma
Journal of Hydrology
Article . 2021 . Peer-reviewed
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis

Authors: Günter Blöschl; David Lun; Korbinian Breinl; Hannes Müller-Thomy; Hannes Müller-Thomy;

Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis

Abstract

Abstract The aim of this paper is to explore how rainfall mechanisms and catchment characteristics shape the relationship between rainfall and flood probabilities. We propose a new approach of comparing intensity-duration-frequency statistics of maximum annual rainfall with those of maximum annual streamflow in order to infer the catchment behavior for runoff extremes. We calibrate parsimonious intensity-duration-frequency scaling models to data from 314 rain gauges and 428 stream gauges in Austria, and analyze the spatial patterns of the resulting distributions and model parameters. Results indicate that rainfall extremes tend to be more variable in the dry lowland catchments dominated by convective rainfall than in the mountainous catchments where annual rainfall is higher and rainfall mechanisms are mainly orographic. Flood frequency curves are always steeper than the corresponding rainfall frequency curves with the exception of glaciated catchments. Based on the proposed approach of combined intensity-duration-frequency statistics we analyze elasticities as the percent change of flood discharge for a 1% change in extreme rainfall through comparing rainfall and flood quantiles. In wet catchments, the elasticities tend to unity, i.e. rainfall and flood frequency curves have similar steepness, due to persistently high soil moisture levels. In dry catchments, elasticities are much higher, implying steeper frequency curves of floods than those of rainfall, which is interpreted in terms of more skewed distributions of event runoff coefficients. While regional differences in the elasticities can be attributed to both dominating regional rainfall mechanisms and regional catchment characteristics, our results suggest that catchment characteristics are the dominating controls. With increasing return period, elasticities tend towards unity, which is consistent with various runoff generation concepts. Our findings may be useful for process-based flood frequency extrapolation and climate impact studies, and further studies are encouraged to explore the tail behavior of elasticities.

Keywords

Rainfall, Probabilities, Catchment characteristics, Rainfall mechanisms, Floods, Elasticity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 19
  • 7
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
71
Top 1%
Top 10%
Top 1%
7
19
Green
hybrid