Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Future Generation Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Future Generation Computer Systems
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.fu...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automating orthogonal defect classification using machine learning algorithms

Authors: Lopes, Fábio; Agnelo, João; Teixeira, César A.; Laranjeiro, Nuno; Bernardino, Jorge;

Automating orthogonal defect classification using machine learning algorithms

Abstract

Abstract Software systems are increasingly being used in business or mission critical scenarios, where the presence of certain types of software defects, i.e., bugs, may result in catastrophic consequences (e.g., financial losses or even the loss of human lives). To deploy systems in which we can rely on, it is vital to understand the types of defects that tend to affect such systems. This allows developers to take proper action, such as adapting the development process or redirecting testing efforts (e.g., using a certain set of testing techniques, or focusing on certain parts of the system). Orthogonal Defect Classification (ODC) has emerged as a popular method for classifying software defects, but it requires one or more experts to categorize each defect in a quite complex and time-consuming process. In this paper, we evaluate the use of machine learning algorithms (k-Nearest Neighbors, Support Vector Machines, Naive Bayes, Nearest Centroid, Random Forest and Recurrent Neural Networks) for automatic classification of software defects using ODC, based on unstructured textual bug reports. Experimental results reveal the difficulties in automatically classifying certain ODC attributes solely using reports, but also suggest that the overall classification accuracy may be improved in most of the cases, if larger datasets are used.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 19
  • 3
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
38
Top 10%
Top 10%
Top 10%
3
19
Green
hybrid